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ABSTRACT
Ontology learning is an important task in Artificial Intelli-
gence, Semantic Web and Text Mining. This paper presents
a novel framework for, and solutions to, three practical prob-
lems in ontology learning. An incremental clustering ap-
proach is used to solve the problem of unknown group names.
Learned models at each level of an ontology address the
problem of no control over concept abstractness. A metric
learning module moves beyond the limitation of traditional
use of features and incorporates heterogeneous semantic ev-
idence into the learning process. The metric-based learn-
ing framework integrates these separate components into a
single, unified solution. An extensive evaluation with Word-
Net and Open Directory Project data demonstrates that the
method is more effective than a state-of-the-art baseline al-
gorithm.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

Keywords
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1. INTRODUCTION
Ontology learning is an important task in Artificial Intel-

ligence, Semantic Web and Text Mining. Given a set of con-
cepts extracted from a text corpus, organizing them into the
correct hierarchy for knowledge representation is the prob-
lem of ontology learning. The learned concept ontology is
not only a hierarchical summary for a text corpus, but also
a tool for further reasoning and inferencing by other data
analysis tasks, for instances, gene retrieval based on gene
ontology and word sense disambiguation based on a noun
hyponym ontology. A well-defined ontology can greatly help
research in other related fields. WordNet [7] and Open Di-
rectory Project (ODP) 1 are two such excellent examples,

1http://www.dmoz.org/
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which are widely used in Information Retrieval and Natural
Language Processing.

Despite manually-constructed ontologies, such as Word-
Net and ODP, there are numerous ontologies learned by au-
tomatic and semi-automatic algorithms [1, 3, 4, 5, 8, 9, 10,
12, 13, 14, 16]. Many algorithms use hierarchical cluster-
ing, in particular bottom-up hierarchical clustering, as the
main framework. It is due to the fact that ontologies are
hierarchies in nature. The traditional ontology construction
process is as follows: firstly detect concept candidates, then
cluster them bottom-up based on the agglomerative clus-
tering algorithm: merge similar concepts together, find a
name for a new group and move to the next higher level
to repeat the process, finally form a tree-structured ontol-
ogy. Note that in the above process, there is a difficult
step - “find a name for a new group”. Given a group of
concepts, automatically finding a term or a phrase to best
describe the group members, is still an unsolved problem.
One strategy to tackle (or bypass) this problem is to replace
the bottom-up approach by an incremental one. In this pa-
per we present an incremental clustering framework to build
an ontology step by step by considering each concept can-
didate in turn and putting them into the correct positions
in the hierarchy. In our framework, all concepts in the fi-
nal ontology come from an available concept candidate set.
Thus the problem of unknown group names is avoided in
our approach.

Another major shortfall of previous ontology learning al-
gorithms has been the ignorance to concept abstractness.
Current technologies treat concepts at different abstraction
levels of an ontology in the same way, however, it is clear that
abstract concepts, such as “science”, “economy”, “thought”
and concrete concepts, such as “hopo camp”, “mercury pol-
lution”, “polar bear” are different in many ways. Concrete
concepts are considered to be physical entities with char-
acteristic shapes, parts, materials, etc., whereas abstract
concepts lack physical attributes [6]. Concrete concepts
are likely to lie at the lower levels of an ontology, whereas
abstract concepts lie at the higher levels since they cover
broader knowledge and subsume more descendent concepts
than concrete concepts. Moreover, simple string pattern
matching works well for detecting hyponyms for concrete
concepts, for instance, “hopo camp” is a hyponym for “camp”,
which follows the simple rule - “NP1 NP2 is a hyponym for
NP2”, whereas such pattern matching seldom works for ab-
stract concepts, for instance, “chemistry” is a hyponym for
“science” but does not follow the above rule. The algorithm
we present in this paper is designed to address the differ-



ences from different concepts categories and model them in
the learning framework to produce more sensible results.

A third contribution of our approach is the flexibility to
incorporate heterogenous semantic evidence. Previous tech-
nologies either use only one type of semantic evidence to
infer all relationships in an ontology (for instance, substring
matching in the myGrid system [12], document statistics in
the subsumption approach [13]) or use one type of semantic
evidence for a particular subtask in ontology learning (for
instance, lexico-syntactic patterns for conditional probabil-
ity prediction [14], cosine document similarity for measur-
ing concept differences [3]). By ontology metric learning,
our work provides a general framework which allows flexible
inclusion of all kinds of semantic evidence into the learning
process, and selects the best suitable features depending on
the actual needs.

Our approach presents solutions to the above three prob-
lems simultaneously: (1) by taking the incremental clus-
tering approach, we solve the problem of unknown group
names; (2) by learning statistical models for concepts at dif-
ferent abstraction levels, we explicitly address concept ab-
stractness; (3) by a separate metric learning module, we in-
corporate heterogenous syntactic and semantic features into
the learning process. The metric-based learning framework
transforms the ontology learning task into an optimization
problem and offers a unified solution to these three prob-
lems.

The following of this paper is organized as: Section 2 gives
our definition and assumptions about ontology space. Sec-
tion 3 details the metric-based ontology learning framework.
Section 4 describes the application and implementation of
our framework for noun hyponym ontology construction.
Section 5 evaluates the approach with WordNet and ODP
data and compares it with a state-of-the-art algorithm. Sec-
tion 6 concludes the paper.

2. THE ONTOLOGY SPACE
To have a theoretical formulation of the learning frame-

work, we give a formal definition of an ontology and related
concepts in this section. After that, we give the three impor-
tant assumptions about ontology space which will be applied
into our algorithm design and implementation.

2.1 Definition of Ontology Space

Definition 1. An ontology is a data model T that repre-
sents a set of concepts {c1, c2, ..., cn} within a domain D and
a set of relationships R between those concepts.

T=(C,R|D)

where

C = {c1, c2, ..., c|C|}

R = {(c1, c2), (c1, c3), ...(c|C|−1, c|C|)}.

Imagine that all the human knowledge has been put into a
space, which we call the knowledge space. Each ontology is
a part of this knowledge space and focuses on one domain.
There is a many-to-one mapping from an ontology to a do-
main in the knowledge space. To develop our assumptions
about an ontology, let us introduce a new concept - ontology
space.

Definition 2. An ontology space S(T) is the space oc-
cupied by an ontology T in the entire knowledge space. It is
represented by the size of the space, which is measured by
the amount of information included in the ontology.

S(T)=Info(T)

where Info(.) is a function to measure the amount of in-
formation.

Definition 3. A full ontology space S(T:T ∈ full) is
the ontology space occupied by an ontology T which roots
from a concept c whose descendent concepts all present.

Definition 4. A partial ontology space S(T:T /∈ full)
is the ontology space occupied by an ontology T which roots
from a concept c some of whose descendent concepts are
missing.

2.2 Assumptions of Ontology Space
Given the definition of ontology space, we make the fol-

lowing assumptions about ontology space and its properties.

Assumption 1. Constant Total Assumption. The amount
of information in a full ontology space is a constant.

Info(T:T ∈ full) = K

where K is a constant.

Assumption 2. Minimum Evolution Assumption. Dur-
ing the process of completing an full ontology space, there
are many partial ontology spaces. The ontology Tn+1 asso-
ciated with the next ontology space Sn+1 from the current
ontology space Sn is the one introduces the least changes in
the information between these two spaces:

T n+1 = arg min
T ′

∆Info(T n, T ′)

where

∆Info(T n, T ′) = ‖Info(T n)− Info(T ′)‖.

Assumption 3. Abstractness Assumption. Concepts at
the same abstraction level share the same characteristic func-
tion as their Info(.) function. Concepts at different ab-
straction level have different characteristic functions.
∀abstraction level i:

∀c ∈ i, Info(Tc) = fi(Tc)

∀abstraction level i, j:

∀i, j, i 6= j, fi(.) 6= fj(.)

where Tc is the ontology roots from concept c. fi(.) is the
characteristic function for concepts at level i.

3. A METRIC-BASED LEARNING FRAME-
WORK

In the knowledge space, ontologies and domains follow a
many-to-one mapping. For instance, for a biological domain,
there are functional ontology for the functional relationships
among the actions, and nominal ontology for hyponym re-
lationships between noun concepts [11, 12]. Given so many
kinds of ontologies, it is time-consuming to tailor algorithms
for a particular kind of ontology. In this section, we present
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Figure 1: Illustration of Ontology Metric

a ontology learning framework which is general enough for
many different ontology learning tasks.

In section 3.1, we introduce an important concept - on-
tology metric, for this metric-based learning framework. In
section 3.2, we give the formal problem formulation for the
ontology learning task. In section 3.3, we present a greedy
optimization algorithm to construct the ontology based on
the minimum evolution assumption.

3.1 Ontology Metric
A metric is a distance measure, d(., .), between all data

pairs (i, j) in a set S. Formally, it is a function d : S×S −→
R+. As a valid matric, d has to fulfill several criteria:

• Non-negativity. d(i, j) ≥ 0

• Symmetricity. d(i, j) = d(j, i)

• Equality Condition. d(i, j) = 0 ⇔ i = j

• Triangular Inequality. d(i, j) + d(j, s) ≥ d(i, s)

An ontology metric is a metric which functions on an ontol-
ogy T. Formally, it is a function d : C × C −→ R+, where
C is the set of concepts in T. Note that the graph structure
of an ontology is actually a tree, a graph without cycles. In
graph theory [15], a tree metric is defined as a function on
the set of leaf nodes in the tree. Similar to but different
from the tree metric, ontology metric is specially designed
for the metric-based ontology learning framework and is a
function on the entire set of nodes.

The ontology metric d(T,w) on an ontology T with edge
weights w for any data pair (i, j) in the concept set C is
defined as the sum of all edge weights along the path between
the data pair:

d(T,w)(i, j) =
∑

eij∈P (i,j)

w(eij)

where P (i, j) is the set of edges defining the path from con-
cept i to j.

Figure 1 gives an illustration of ontology metric on a 5-
node ontology. Since ontology metric is still a metric, it
has all four properties for a metric function. In particular,
given the definition of ontology metric, the last property
- triangular inequality, falls into a special situation, where
the sum of the ontology metrics for the ending points on two
connected paths equals the ontology metric for the ending
points on the entire path:

d(i, j) + d(j, s) = d(i, s).

Moreover, note that when two data points directly con-
nect, the path between them reduces to the edge between
them. Therefore, in this case, the ontology metric is the
edge weight. Given that a metric should be non-negative,

all of the edge weights should also be non-negative. This
property can be ensured by the four point condition: for
any four concepts (i, j, s, t) in T,

d(i, j) + d(s, t) ≤ max (d(i, s) + d(j, t), d(i, t) + d(j, s)).

3.2 Problem Formulation
We define the problem of ontology learning as the con-

struction of a full ontology T̂ given a set of concepts C and
an initial partial ontology T0(S0, R0), where S0 ⊆C. Note
that the initial ontology could be empty. The process of on-
tology learning then starts from the initial partial ontology
T0 and keeps adding the concepts in set C one by one into
T0, until the full ontology is formed (all of the concepts in
C are added).

At each concept insertion step, a new partial ontology T

is formed. We define the amount of information carrying in
an ontology to be the sum of all ontology metrics in T:

Info(T ) =
∑

i<j,ci,cj∈C

d(ci, cj) (1)

By the abstractness assumption of ontology space in sec-
tion 2, concepts at different abstraction levels result in differ-
ent characteristics. To capture these differences, we define
the amount of information for an abstraction level L as:

Info(L) =
∑

i<j,ci,cj∈L

d(ci, cj) (2)

where L is a subset of concepts lying at the same level of
ontology T. For example, in Figure 1, node 1 belongs to level
L1, and node 2 and 5 belong to level L2.

By the minimum evolution assumption of ontology space,
the ontology Tn+1 associated with the next ontology space
Sn+1 from the current ontology space Sn is the one intro-
duces the least changes in the information between these
two spaces. Therefore, within our framework, we define the
goal of ontology learning is to find the optimal full ontology
T̂ such that the information changes since the initial partial
ontology T0 are the least, i.e., to find:

T̂ = arg min
T ′

∆Info(T ′, T 0) (3)

where T ′ is a full ontology, i.e., the set of concepts in T ′ is
C.

3.3 The Optimization Algorithm
We have formulated the ontology learning task into an

optimization problem. In this section, we present the opti-
mization algorithm and show that the learning framework
offers a unified solution to the three problems we have men-
tioned earlier in section 1.

To find the optimal solution for equation 3, we need to
find the optimal set of concepts and the optimal set of re-
lationships for T ′. Since the optimal set of concepts for a
full ontology is always C, the only unknown part is the opti-
mal set of pairwise relationships R̂. Thus, the optimization
formula in equation 3 can be formulated into an equivalent
problem, i.e., to find:

R̂ = arg min
R′

∆Info(T (C, R′), T 0(S0, R0)) (4)

Based on the optimization solution of R̂, every concept
in C is placed in the optimal position in an ontology. Note
that C is a given input, which contains all concepts that will



appear in the ontology. Since there is no need to find new
concepts that are not in C, the first problem of unknown
group names in the bottom-up approaches is resolved triv-
ially in our framework.

Note that in the framework, concepts are added incre-
mentally into the ontology. At each concept insertion step,
by the minimum evolution assumption, the resulting ontol-
ogy after a new concept is inserted should be the one gives
the least information change. Therefore, the updating func-
tion for the resulting set of relationships R(n+1) after a new
concept z is inserted can be calculated as:

R(n+1) = arg min
R′

∆Info(T (Sn ∪ {z}, R′), T (Sn, Rn)) (5)

By plugging in the definition of the information change
function ∆Info(., .) in section 2 and the formulas in equa-
tion 1, we have the updating function as:

R(n+1) = arg min
R′

‖
∑

cx,cy∈Sn∪{z}
d(cx, cy)−

∑
cx,cy∈Sn

d(cx, cy)‖

(6)
The above updating function can be transformed into a

minimization problem, which is defined as:

min u

subject to u ≤ ∑
cx,cy∈Sn∪{z} d(cx, cy)−∑

cx,cy∈Sn d(cx, cy)

u ≤ ∑
cx,cy∈Sn d(cx, cy)−∑

cx,cy∈Sn∪{z} d(cx, cy)

x < y

The above minimization problem is defined following the
minimum evolution assumption, hence we call it the “mini-
mum evolution” objective function.

Further, to address the second problem of no control over
concept abstractness, we model concept abstractness explic-
itly into another objective function. Based on the abstract-
ness assumption (see section 2), each level Li is character-
ized by its own function fi. We define the characteristic
functions as a linear interpolation of some underlying fea-
ture functions Hi. The optimization problem is the least
square fit of the amount of information at level Li, and the
linear interpolation score W T

i Hi. Therefore, the “abstract-
ness” optimization objective function can be defined as:

min
∑

i

‖Info(Li)−W T
i Hi‖2

By plugging in the definition of the amount of information
for an abstraction level and the underlying feature functions,
the “abstractness” objective function becomes:

min
∑

i

‖
∑

cx,cy∈Li

d(cx, cy)−
∑

j

wi,jhi,j(cx, cy))‖2

where wi,j is the weight for the jth underlying feature func-
tion at level Li, hi,j(., .) is the jth underlying feature func-
tion for concept pairs at level Li.

Note that modelling of concept abstractness is done by
approximating characteristic functions for each abstraction
level as a linear interpolation of a set of underlying feature
functions. In theory, there is no specific constraint on quan-
tity and definitions of the underlying feature functions. In
practice, the selection of good feature functions may de-
pend on a specific application. Nevertheless, the design of
the learning framework offers a flexible inclusion of heteroge-
nous features and hence tackle the third problem of limited

use of features. In section 4, we will demonstrate more de-
tails of our use of heterogenous features in an application.

In this metric-based learning framework, both “minimum
evolution” and “abstractness” objectives need to be satis-
fied . To optimize multiple criteria, it needs to reach the
Pareto optimality [2]. Since the two optimization problems
are both convex, the Pareto optimal can be obtained by
scalarization. That is to say, introduce a variable λ to con-
trol the contribution of each objective within the range of 0
to 1. The multiple criterion optimization function becomes:

min λu + (1− λ)v

subject to u ≤ ∑
cx,cy∈Sn∪{z} d(cx, cy)−∑

cx,cy∈Sn d(cx, cy)

u ≤ ∑
cx,cy∈Sn d(cx, cy)−∑

cx,cy∈Sn∪{z} d(cx, cy)

v =
∑

i ‖
∑

cx,cy∈Li
d(cx, cy)−∑

j wi,jhi,j(cx, cy))‖2
x < y

0 ≤ λ ≤ 1

The multiple criterion optimization leads to the follow-
ing greedy optimization algorithm, which at each concept
insertion step, produces a new partial ontology by adding
to the old one a new concept z, and a new set of relation-
ships R(z,.), which minimizes the multi-criterion objective
function. The algorithm is shown as the following:

foreach z ∈ C \ S
S ← S ∪ {z};
R ← R ∪ {arg minR(z,.)(λu + (1− λ)v)};

Output T (S, R)

The above optimization algorithm present a general in-
cremental clustering procedure to construct ontologies. By
minimizing the ontology structure changes and modelling
concept abstractness at each step, it finds the optimal posi-
tion of each concept in the ontology hierarchy. In the next
section, we will show an application of this framework on a
common ontology construction task.

4. NOUN HYPONYM ONTOLOGY CONSTRUC-
TION

Among all kinds of ontologies, perhaps noun hyponym
ontology is most commonly used. Although our proposed
learning framework can be used to construct any ontology,
in this section, we focus on the most common task - noun
hyponym ontology construction.

WordNet and ODP are two available human-built ontolo-
gies. We extract subdirectories from WordNet and ODP,
and test our algorithm to investigate its ability to recon-
struct these subdirectory hierarchies. Each subdirectory be-
comes one dataset in our experiments, and each dataset is
an ontology. In WordNet subdirectory extraction, we only
use the word sense occurring in a particular subdirectory.
Therefore there is no multiple senses for a word in one on-
tology. In ODP subdirectory extraction, we parse the topic
lines, such as “Topic r:id=“Top/Arts/Movies””, in the XML
dataset to get concepts, such as “arts” and “movies” in this
example, along the paths. In total, there are 100 subdirec-
tories2 , 50 each extracted from WordNet and ODP.

2The 50 WordNet subdirectories are from 12 topics: gather-
ing, professional, people, building, place, milk, meal, water,
beverage, alcohol, dish and herb. The 50 ODP subdirecto-



With the extracted ontologies, we create both training and
testing datasets. The training data is in the same format
of an extracted ontology: a set of concepts and a set of
pairwise relationships between the concepts. The testing
data only contain the set of concepts in the corresponding
ontology (since we need to find the relationships). Note
that in other tasks such as constructing ontology for a given
corpus, concept candidates need to be extracted by noun
phrase mining and named entities recognition [16].

In the following subsections, we first show how to estimate
the ontology metric for a new pair of concepts and then we
address the use of heterogenous features again by relating
our solution (for the third problem of limited use of features)
to the task of noun hyponym ontology construction.

4.1 Estimating Ontology Metric
It is crucial to learn a good ontology metric for each pair of

concepts in an ontology in this metric-based learning frame-
work. In order to apply the multi-criterion optimization
algorithm in section 3, it needs to know the ontology metric
for the testing data. The idea is to learn the metric from
the training data.

In the training data, the ontology metric d(x, y) for con-
cept pair (x,y) is generated by assuming every edge weight as
1 and summing up all the edge weights along the path from
concept x to y. We assume that there are some underlying
feature functions which measure the semantic distance from
concept x to concept y. A weighted combination of these
functions will approximate the ontology metric for (x,y):

d(x, y) =
∑

j

wjhj(x, y)

where wj is the jth weight factor for hj(., .), the jth feature
function.

In our experiments, the estimation and prediction of on-
tology metric are done by ridge regression.

4.2 Heterogenous Features
As part of the proposed general framework, feature func-

tions are used more than once. In both ontology metric
estimation (section 4.1) and abstractness optimization (sec-
tion 3), pairwise underlying feature functions are exploited.
In theory, the design of the learning framework allows us
to embed as many feature functions as we want into the
framework as long as they are indicators of semantic dif-
ference/similarity between two concepts. In the application
of noun hyponym ontology construction, we focus on the
following features:

Google KL-Divergence The top 1000 Google snippets are
downloaded using each concept as a query issued to Google
search engine. The snippets are built into a language model
for each concept. This feature function then measures the
KullbackLeibler divergence (KL divergence) between the lan-
guage models associated with any two concepts.

Wikipedia KL-Divergence The entire Wikipedia corpus is
downloaded and indexed by Indri3. The top 100 relevant
documents returned by Indri after being queried by each

ries are from 16 topics: computers, robotics, intranet, mo-
bile computing, database, operating system, linux, tex, soft-
ware, computer science, data communication, algorithms,
data formats, security multimedia and artificial intelligence.
3http://www.lemurproject.org/indri

Table 1: Statistics of Datasets
Statistic WordNet ODP

total #datasets 50 50
total #concepts 1964 2210

average #concepts 39 44
max #concepts 86 104
average depth 5.5 5.9

max depth 9 8
level w/ most concepts 4 4

concept are built into a language model. This feature func-
tion then measures the KL divergence between the language
models associated with any two concepts.

Google Minipar Syntactic Distance The top 1000 Google
documents are downloaded for every pair of concepts after
querying Google search engine by a concatenation of a con-
cept pair (quotation marks are added to group terms in a
phrase). The documents are then split into sentences and
each sentence is parsed by Minipar4. This feature function
returns the edge distance between two concepts in a syntac-
tic parse tree.

Google Lexico-Syntactic Patterns The top 1000 Google
documents are downloaded for every pair of concepts af-
ter querying Google search engine by a concatenation of a
concept pair. We mine the top 10 frequent lexico-syntactic
patterns in the above Google collection for a seed hypernym-
hyponym pair. We obtain patterns such as “NP A is a
NP B”, “NP A, a NP B”, etc, where NP A refers to the
hypernym, NP B refers to the hyponym in the pair. Those
patterns are then used to score difference between an un-
known pair of concepts. This feature function returns a
vector of distance scores for any two concepts.

Term Co-occurrence This feature function returns the to-
tal document count (appears on the first page of Google
search results) in log scale after querying Google search en-
gine by a concatenation of a concept pair.

Word Length Difference This feature function simply re-
turns the difference of number of words in two concepts.

These features vary from simple statistics to complicated
syntactic patterns, basic word length feature to comprehen-
sive Web-based features, which is heterogenous. The flexible
design of our learning framework allows us to use all of them
and even allow different feature sets for concepts at differ-
ent abstraction levels. We study the interactions between
features and different abstraction levels in section 5.

5. EVALUATION
To evaluate the proposed framework for ontology learning,

we apply the techniques developed for noun hyponym ontol-
ogy construction to reconstruct subdirectories from Word-
Net and ODP. The 100 datasets (as introduced in section 4)
containing more than 4,000 concepts, are from various top-
ics. Table 1 shows statistics about the ontology structure of
the data.

In section 5.1 we describe our evaluation methodology,
followed by three sets of experiments in the following sec-
tions. The experiments are designed based on the three
foci of this paper. Section 5.2 tests on the performance of
the main ontology learning task for noun hyponym ontology

4http://www.cs.ualberta.ca/ lindek/minipar.htm



construction and also compares our system with a strong
baseline system. Section 5.3 evaluates the impact of concept
abstractness on system performance. Section 5.4 studies the
interaction of individual feature and abstraction level, and
their joint impact on system performance.

5.1 Methodology
We evaluate the quality of the learned ontologies by com-

paring them with the gold standards - original ontologies
obtained from WordNet and ODP. A hypernym-hyponym
pair is the basic evaluation unit. From both a test run and
the gold standard, a list of hypernym-hyponym pairs are
generated and compared.

Precision, recall and F1 measures are the evaluation met-
rics used in the following sets of experiments. Since ontology
is in a tree-structure and concepts at the higher levels are
harder to obtain due to their higher abstractness, we weigh
concepts at different levels with different weights so that ab-
stract concepts count more. If the levels in an ontology are
indexed in ascending order from top-down (level 1 indicates
the top level), the number of correctly returned hypernym-
hyponym pairs can be calculated as:

∑

(i,j)

1(pair (i, j) is returned correctly)∗max level − level(j) + 1∑max level
l=1 l

where 1(.) is the indicator function, level(.) is the function
returns the level index of a concept, max level is the max-
imum depth of an ontology. The number of returned con-
cepts and the number of concepts in the gold standard can
be calculated in a similar way by changing the definition of
the indicator function.

Leave-one-out cross validation is used to measure the learn-
ing effect across different training and test datasets. For the
50 datasets from either WordNet or ODP, we pick 49 of
them to generate training data, and test on 1 dataset. We
repeat the process for 50 times, with different training and
test sets at each time, and report the averaged precision,
recall and F1 across all 50 runs. The results reported in sec-
tion 5.3 and 5.4 are obtained exactly in this way. In section
5.2, we perform leave-one-out cross validation on a differ-
ent total of datasets by gradually increasing the number of
training datasets while still testing on one dataset. The av-
eraged precision, recall and F1 across that total number of
datasets, ranging from 2 to 50, are reported.

5.2 Performance of Ontology Learning
To test the performance for the main ontology learning

task, experiments in this section compare our metric-based
framework with a state-of-the-art baseline system [14] from
Stanford University. The baseline system is a strong base-
line, which takes a probabilistic approach for ontology con-
struction. At each concept insertion step, they maximize
the joint probability of the whole hierarchy, which is differ-
ent from our work. Another difference is that in their origi-
nal work, only lexico-syntactic patterns are used to predict
conditional probability scores, whereas in our work, we can
easily incorporate various kinds of semantic features. To
have a fair comparison, we re-implement their framework to
add the same set of features as in our work.

Figure 2 and 3 demonstrate the overall system perfor-
mance of our system and the baseline system for WordNet
and ODP datasets. For WordNet datasets, precision of the
baseline system ranges from 0.7 to 0.84 (which is consistent

with what have been reported in [14]), whereas precision of
the proposed algorithm ranges from 0.78 to 0.93, with an
absolution gain of 8%-9%. For ODP datasets, precision of
the baseline system ranges from 0.68 to 0.87, whereas pre-
cision of the proposed algorithm ranges from 0.79 to 0.95,
with an absolute gain of 8%-11%. In summary, the pro-
posed metric-based approach outperforms the baseline by
an absolute gain around 10% for both WordNet and ODP.

From Figure 2, we can see that with the total number of
concepts increasing, the system performance are improving.
However, Figure 3 shows that the improvement of precision,
recall and F1, stops after adding a certain number of con-
cepts as the training data, and then becomes stable after
adding more. This may be attributed to the observation
that there is more noise in ODP than in WordNet. For ex-
ample, under “artificial intelligence”, there are “neural net-
works”, “natural language” and “academic departments”,
where “academic departments” should not be a hyponym
here.

5.3 Impact of Concept Abstractness
In this section, we study the impact of modelling concept

abstractness on system performance. Figure 4 and 5 show
the changes of system performance when varying the coef-
ficient λ in the Pareto objective (see section 3.3). Hence λ
is a coefficient to adjust the contributions of minimum evo-
lution objective and abstractness objective. As λ → 0, the
system relies more on the abstractness objective whereas as
λ → 1, the system relies more on the minimum evolution
objective. λ is an indicator to see the impact of modelling
concept abstractness in this work.

When λ = 1, the system purely relies on the minimum
evolution objective. As λ decreases, the contribution of con-
cept abstractness increases, and the system performance im-
proves till reaching the maximum, where λ lies in the range
of 0.7 to 0.8. After reaching the maximum, as λ keeps de-
creasing, the contribution of concept abstractness increases,
but the system performance drops. The optimal λ values,
0.8 for WordNet and 0.7 for ODP, are used in experiments
in section 5.2 and 5.4.

It shows that a good combination of both objectives is
important. Modelling concept abstractness indeed improves
the overall performance as comparing to not modelling it
at all (when λ = 1). However, the major contributor is still
the metric-based optimization framework, i.e., the minimum
evolution objective.

5.4 Impact of Various Features
In this section, we study the effect of using heterogenous

features and the joint impact of features and concept ab-
stractness on system performance. Figure 6 and 7 demon-
strate the impact of various semantic features on different
levels of concepts in an ontology. On the x-axis are indices
of the levels, each of which is used in turn to model concept
abstractness. Level 1 is the top level. Level=0 means there
is no abstraction level modelled. On the y-axis are different
features used in this work, each of which is switched on in
turn. On the z-axis are F1 values of leave-one-out cross val-
idation averaged over 50 datasets. The surface indicates the
F1 values, whereas the shading indicates different features.

Both figures show that the system performance boosts
when abstract levels (levels 2-3), opposite to concrete levels
(level 4-8), are modelled. This can be attributed to the ob-
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Figure 2: Precision, Recall and F1 for WordNet
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Figure 3: Precision, Recall and F1 for ODP
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Figure 4: Impact of Concept Abstractness for Word-
Net
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Figure 5: Impact of Concept Abstractness for ODP
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Figure 6: Feature Impact on Different Abstraction
Level for WordNet
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Level for ODP



servation that characteristics of abstract levels are general
and shared across different ontologies. Very general con-
cepts may even appear in multiple ontologies. On the other
hand, concepts at concrete levels are more specific and with
few characteristics to share. Moreover, they indicate that
the learning of abstract concepts is the most sensitive part
in the entire framework - a good modelling on abstract con-
cepts can greatly boost the performance. Given the fact
that ontology learning for abstract concepts is harder than
that for concrete concepts, our strategy of explicitly mod-
elling the concept abstractness successfully provides the op-
portunity to improve the weakest link. Further more, for
abstract concepts, the contributions from difference features
vary, whereas for concrete concepts, the contributions indif-
ferent. This difference confirms the third assumption about
ontology space in section 2: different abstraction levels have
different characteristics.

Features from six categories (see section 4.2 for more de-
tails) are turned on one by one in this experiment. It is
interesting to see that simple features, such as term co-
occurrence and word length difference, work the best for
both datasets. In WordNet datasets, syntactic features, such
as lexico-syntactic patterns and minipar distance, works bet-
ter than contextual features, such as KL-divergence of Google
and Wikipedia documents, while in ODP datasets, the con-
clusion is the opposite. This can be attributed to the fact
that WordNet has a richer vocabulary and a more rigid def-
inition of hyponyms and hence more sensitive to linguistic
patterns, while ODP contains more noise hence works along
better with contextual features generated from the Web.

Lastly, note that experiments shown in Figure 6/7 use
the same set of data as in Figure 2/3 when the number of
concepts equals 2000. Comparing Figure 6/7 (experiments
on individual features) with Figure 2/3 (experiments on all
features), we notice a performance gain. It indicates that
the combination of heterogenous features gives more rise to
the system performance than an individual feature does.

6. CONCLUSIONS
This paper has presented a novel metric-based framework

to address three problems in ontology learning. The in-
cremental clustering algorithm avoids and hence solves the
problem of unknown group names in traditional bottom-up
approaches. The framework tackles the problem of no con-
trol over concept abstractness and explicitly models concept
abstractness. The experiments show that concepts at differ-
ent abstraction levels behave differently and are sensitive to
different features. The framework also provides a solution
to the problem of how to incorporate heterogenous semantic
features and the experiments show that it outperforms the
use of single feature. The system has been compared to a
strong baseline system, and shows an absolute gain of 10%
in precision for both WordNet and ODP data. The evalua-
tion demonstrates that the proposed framework is effective
for ontology learning.
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