Overview

Data Preprocessing

- Remove HTML tags, scripts, stylesheets
- Remove Non-English Characters
- Split into Sentences
- Remove Dummy Sentences

Query Formulation

- **title query; e.g., #combine[paragraph](#3(march of the penguins))**
- **title query + opinion words; e.g., #combine[paragraph]([#3(march of the penguins)]#love[/#3(march of the penguins)])
- **title query + nouns, adjectives in descriptions; e.g., #combine[paragraph](#3(march of the penguins) love) #uw15(#3(march of the penguins) like) ...)
- **title query + nouns, adjectives in descriptions + opinion words. e.g., #combine[paragraph]([... #uw15(#3(march of the penguins) great) #uw15(#3(march of the penguins) awesome) documentary film]**

Knowledge Transfer and Opinion Detection

- **Training data from Movie Review**
 - Source: IMDB movie database
 - http://www.cs.cornell.edu/People/pabo/movie-review-data/
 - 5000 opinion sentences, 5000 objective sentences
- **Training data from Product Review**
 - Source: Amazon.com, (5 electronic products including 2 digital cameras, 1 cell phone, 1 DVD players and 1 jukeboxes)
 - http://www.cs.uic.edu/~liub/FBS/FBS.html
 - 2041 opinion sentences, 2217 objective sentences
- **Validation data from Blog Opinions**
 - 1201 opinion sentences, 1240 objective sentences

Knowledge Transfer by Gathering Common N-gram Features across Different Domains

- Rank Sentences by Bayesian Logistic Regression

\[
L = \Pr(Y = 1 | S = s, \theta) = \frac{1}{1 + \exp(-\theta^T s)}
\]

\[
\theta_{\text{max}} = \arg\max_s \left\{ \log \Pr(Y = 1 | S = s, \theta) - \frac{1}{2\theta^T \theta} \right\}
\]

- \(Y=1 \) when sentence \(S \) is an opinion; \(Y=-1 \) when \(S \) is an objective sentence

- Average Sentence scores to get Passage Score

Results

- The MAPs of all submitted runs are better than median
- Our best run is r2, which uses bigram model + adjective percentage w/o query expansion
- Opinion detection is effective, low recall of it is due to low recall of topic retrieval