DUMPLING: A Novel Dynamic Search Engine

Andrew Jie Zhou, Jiyun Luo, Hui Yang
Department of Computer Science, Georgetown University
{jz398,jl1749}@georgetown.edu, huiyang@cs.georgetown.edu

ABSTRACT
In this demo paper, we introduce a new search engine that supports Information Retrieval (IR) in a dynamic setting. A dynamic search engine distinguishes itself by handling rich interactions and temporal dependency among the queries in a session or for a task. The proposed search engine is called Dumpling, named after the development team’s favorite food. It implements state-of-the-art dynamic search algorithms and provides: (i) a dynamic search toolkit by integrating the Query Change Retrieval Model (QCM) and the Win-win search algorithm; (ii) a user-friendly interface supporting side-by-side comparison of search results given by a state-of-the-art static search algorithm and the proposed dynamic search algorithms; (iii) and APIs for developers to apply the dynamic search algorithms to index and search over custom datasets. Dumpling is developed under the umbrella of a bigger project in the DARPA Memex program to crawl and search the dark web to support law enforcement and national security.

1. INTRODUCTION
Dynamic search is an emerging topic in Information Retrieval (IR) research [4]. In dynamic search, we model dynamic systems which change or adapt over time or a sequence of events using a range of techniques from artificial intelligence and reinforcement learning. Many of the open problems in current IR research can be described as dynamic systems, for instance, information retrieval in a session.

In a dynamic search setting, a user issues multiple queries during a session to accomplish a search task. The common process is that the user sends a query, gets the top ranked documents, changes her query and sends it again. As a result, a series of queries, a series of retrieved documents, and rich user interactions will be generated, until the session stops when the user finishes her search task. During a session, the temporal dependencies between queries are presented in that way that the previous queries and the previously obtained search results will influence how the user issues the current query and how the search result rankings could be optimized for the current query.

The dynamic search algorithms implemented in Dumpling include the Query Change Retrieval Model (QCM) [1] and the Win-win search algorithm [3]. Not only does it implement a dynamic search engine, Dumpling also provides a convenient user interface for a user to compare the results from the dynamic search engine and the static search engine. By comparing the retrieved documents, the user can easily evaluate the performance of different search engines. We have deployed Dumpling for DARPA’s Memex program.

The evaluations of the systems are done by obtaining real user feedback for the search results. They show that the dynamic search algorithms dramatically improve the search accuracy over the static search algorithms. To further test the performance of the dynamic search engine, Dumpling also provides simple APIs to update the dataset. Dumpling can automatically build an index and apply the dynamic search algorithm to a new dataset. Dumpling is not only a dynamic search system but also provides potential to further the research of dynamic search.

2. QUERY CHANGE RETRIEVAL MODEL
The Query Change Retrieval Model (QCM) analyzes the evolution of queries as well as previously retrieved documents to enhance the dynamic search. QCM’s document ranking function is based on the previous query q_{i-1}, the current query q_i, the previously retrieved documents D_{i-1}, and the discount factor $\gamma \in (0, 1)$: Score$(q_i, d) = P(q_i | d) + \gamma \sum_{k=1}^{\infty} P(q_i | q_{i-1}, D_{i-1}, a) \max_{d \in D_{i-1}} P(q_{i-1} | D_{i-1})$. It measures the document relevance to the i^{th} query based on the current reward (current document relevance) and the discounted sum of past accumulated rewards/relevance in a session. The most important feature of this formula is that the past queries and retrieved documents have less influence on the user’s current search. The QCM model is highly effective and consistently won the top positions in the recent TREC Session Track evaluations [2].

3. WIN-WIN SEARCH
A user tends to query several times in a row during one search session. She changes keywords in the queries hoping to find more information. The intension of a user differs from one session to another. Sometimes, the user finds some relevant information by the first query, and then wants to find more detailed information about subtopics by the next query (We term this behavior as exploitation.) Other times, the user gets what they need by the first query, and then
Figure 1: Dumpling User Interface

Table 1: Search Accuracy in Precision at 10.

<table>
<thead>
<tr>
<th>algorithm</th>
<th>dynamic search</th>
<th>static search</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision@10</td>
<td>0.52</td>
<td>0.32</td>
</tr>
<tr>
<td># of Queries</td>
<td>362</td>
<td></td>
</tr>
<tr>
<td># of Sessions</td>
<td>178</td>
<td></td>
</tr>
</tbody>
</table>

Dumpling provides a convenient user interface for a user to compare the dynamic search results and the static search results. Dumpling gathers explicit feedback from real users in US agencies working on national security. The user can provide both positive and negative feedback of the search results and the feedback is used in the dynamic search algorithms. In Figure 1, in the first query, a user uses "arrest"; in the second query, the user uses "new york human traffic". From the user’s perspective, she initially wants to know who was arrested recently. Then she wants to further exploit who is recently arrested by New York police because of human trafficking. For the static search algorithm, the retrieved documents only include New York human trafficking news, the keyword "arrest" seldom appears in the documents. For the dynamic search algorithm, the retrieved documents contain much more information about arresting, which better suits the user’s needs.

5. ACKNOWLEDGEMENT

The research is supported by DARPA FA8750-14-2-0226, NSF IIS-1453721, and NSF CNS-1223825. Any opinions, findings, conclusions, or recommendations expressed in this paper are of the authors, and do not necessarily reflect those of the sponsor.

References