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ABSTRACT
The concern for privacy is real for any research that uses user data.
Information Retrieval (IR) is not an exception. Many IR algorithms
and applications require the use of users’ personal information,
contextual information and other sensitive and private information.
The extensive use of personalization in IR has become a double-
edged sword. Sometimes, the concern becomes so overwhelming
that IR research has to stop to avoid privacy leaks. The good news
is that recently there have been increasing attentions paid on the
joint field of privacy and IR – privacy-preserving IR. As part of
the effort, this tutorial offers an introduction to differential privacy
(DP), one of the most advanced techniques in privacy research,
and provides necessary set of theoretical knowledge for applying
privacy techniques in IR. Differential privacy is a technique that
provides strong privacy guarantees for data protection. Theoret-
ically, it aims to maximize the data utility in statistical datasets
while minimizing the risk of exposing individual data entries to any
adversary. Differential privacy has been successfully applied to a
wide range of applications in database (DB) and data mining (DM).
The research in privacy-preserving IR is relatively new, however,
research has shown that DP is also effective in supporting multiple
IR tasks. This tutorial aims to lay a theoretical foundation of DP and
explains how it can be applied to IR. It highlights the differences in
IR tasks and DB and DM tasks and how DP connects to IR. We hope
the attendees of this tutorial will have a good understanding of DP
and other necessary knowledge to work on the newly minted joint
research field of privacy and IR.
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1 MOTIVATION
The rapid development of big data, social networks, mobile services
and the growing popularity of digital communications have pro-
foundly changed Information Retrieval (IR). Many recent advances
in IR research rely on sensitive and private data such as large-scale
query logs, users’ search history, and location information. It is
understandable that the sensitive and private data is kept within
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commercial companies without being shared with the research
community. However, the concern of privacy sometimes became so
overwhelming that it hurt IR research in the past. For instance, the
TREC Medical Record Retrieval Tracks [21] were halted because
of the privacy issue and the TREC Microblog Tracks [10] could
not provide participants with a standard testbed of tweets for a
fair comparison. The proper use of privacy techniques to empower
privacy-preserving IR [25] need to be studied at a timely manner.

Differential privacy (DP) [4] is the state-of-the-art approach
which provides a strong privacy notion and has been widely used
in the database (DB) and data mining (DM) [2, 5, 8, 15, 17, 22]
communities. Recent research has shown that differential privacy
provides the strongest privacy guarantees among all other privacy
techniques.

Differential privacy is mostly used to protect statistical database,
or more generally, for data frequencies. A major challenge of using
DP in IR research is the involvement of natural language corpora.
Those natural language corpora contain open domains of words,
queries, and web documents. Another challenge in applying DP
to IR is related to the long-tail effect of the zipf’s law. The effect
produces very sparse frequency distributions, both at the term level
and the document level, which makes many differentially private
algorithms in data mining cannot be directly applied to IR research
due to very high computational complexity. We will highlight the
unique IR challenges in using DP, with comparisons to similar
applications in DB and DM.

The major concerns of privacy in IR include how to properly
use personalized data for IR research and how to preserve privacy
when releasing them. For instance, web query logs and medical
records should not be shared without privacy enhancement. During
the recent years, researchers have shown that DP is effective in
supporting a few IR topics such as query log anonymization [19] and
Geographic IR [13]. In this tutorial, we cover successful examples of
using DP to support IR tasks such as web search, query suggestion,
and geological information retrieval. We hope that this tutorial
could be a milestone in the development of privacy-preserving IR
and enable more valuable research in this promising new joint field.

2 TOPICS TO BE COVERED
Theme 1 Privacy-Preserving IR and Early Attempts - 60 mins

(1) Background: Privacy concerns in IR. [28]
(2) Privacy-Preserving Information Retrieval (PPIR).
(3) Naive privacy techniques [3].
(4) K-Anonymity [16], T-Closeness [9], L-Diversity [12].
(5) Privacy in Search [1, 11] and recent research topics in Privacy-

Preserving IR [14, 23, 25].
Theme 2 Differential Privacy - 50 mins

(1) Background knowledge in probability.
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(2) Mathematical definitions of DP [4].
(3) Discussions about DP.

Theme 3 IR applications using Differential Privacy - 70 mins
(1) Why differential privacy is applicable to IR.
(2) Query Log Anonymization [6, 7, 26, 27, 29].
(3) Geographic IR [13, 18–20].
(4) Other applications that use DP.
(5) Wrap Up and Discussions.

3 LEARNING OBJECTIVES
The objective of this tutorial is to provide a comprehensive and
up-to-date introduction to differential privacy for IR research. We
also present a handful of recent IR and mining applications utilizing
DP. By the end of this tutorial, the attendees are able to:
• Master DP’s mathematical foundation.
• Have a sound understanding of how DP connects to IR.
• Have knowledge of how DP is used in the state-of-the-art
research in IR and data mining.
• Be able to generalize the use of DP in other privacy-preserving
IR scenarios.

4 LINKS TO RELATED RESOURCES
Awebsite to related resources is located at https://privacypreservingir.org/.
It contains related publications and
• An early version of this tutorial [24] given in the 3rd ACM
International Conference on the Theory of Information Re-
trieval (ICTIR 2017), Amsterdam, Netherlands. Oct 1, 2017.
• The first, second, and third "Privacy-Preserving IR: When
Information Retrieval Meets Privacy and Security" Work-
shops PPIR’14 [14], PPIR’15 [23] and PPIR’16 [25] organized
by the authors during the 37-39th International ACM SIGIR
Conferences (SIGIR 2014 - 2016).

5 SUPPORT MATERIALS
Attendees will be given printed handouts and a copy of slides.

6 CONCLUSION
Privacy in IR is an emerging field of research. This tutorial high-
lights the differences of IR applications and other applications in
DB and DM and introduces a state-of-the-art privacy technique –
differential privacy – to the WSDM community. The purpose of
this tutorial is to provide necessary background knowledge to solve
the privacy issues in IR related research. Differential privacy is a
theoretical framework that requires good mathematical skills and
deep understanding to master it. It is not trivial to learn this sub-
ject however due to serious privacy concerns in IR and the strong
privacy guarantee provided by this latest technique, we think it is
necessary for anyone who would like to pursue research in privacy-
preserving IR to master this subject. We hope the tutorial to help
lay a solid foundation for using DP to solve many privacy problems
in IR.
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