Georgetown University at TREC 2017 Dynamic Domain Track

Zhiwen Tang
Georgetown University
zt79@georgetown.edu

Grace Hui Yang
Georgetown University
huiyang@cs.georgetown.edu

Abstract

TREC Dynamic Domain (DD) track is intended to support the research in dynamic, exploratory search within complex domains. It simulates an interactive search process where the search system is expected to improve its efficiency and effectiveness based on its interaction with the user. We propose to model the dynamic search as a reinforcement learning problem and use neural network to find the best policy during a search process. We show a great potential of deep reinforcement learning on DD track.

1. Introduction

TREC 2017 Dynamic Domain (DD) track simulates a professional search scenario where the search system learns user’s information need through the feedback provided by the user during the interaction. This search task is constrained in a specific complex domain and the desired information may contain multiple aspects, which are referred as subtopics in DD track. Participating systems are expected to find relevant information as much as possible with cost as little as possible.

In this track, for every search topic, search system receives a query (topic name) that represents user’s information need. Then during every iteration, the search system returns up to 5 documents to the simulated user, a program called Jig\(^1\). Jig gives relevance judgement regarding returned documents, which includes the relevancy of documents at subtopic level. Then the search system has a chance to decide whether to continue to the next iteration. If it decides to continue, it then adjusts its search algorithm using the feedback obtained in previous iterations to find documents that better satisfy the user.

In 2017, DD track provides 60 search topics (queries) in New York Times Annotated Corpus [1]. Three metrics, Cube Test (CT) [2], Session-DCG (sDCG) [3] and Expected Utility (EU) [4], including their raw scores and normalized scores [5], are used for evaluation.

The settings of DD share many similarities with those of reinforcement learning. So we model the dynamic search problem as a reinforcement learning problem. After that, we employ the deep Q-learning network [9], which is successful in many reinforcement learning tasks, to look for the optimal policy during the search process. We show that deep reinforcement learning has a great potential in improving the performance of search system on DD track.

2. Reinforcement Learning Framework

In DD track, the search system interacts with the simulated user and makes a series of decisions, like whether to stop the search and how to rerank the documents. The search system is expected to make optimal decisions to maximize the evaluation scores. This setting is very similar to those of reinforcement learning [6]. In reinforcement learning, an agent interacts with the environment and during every interaction, the agent need to take an action, to which the

\(^1\) https://github.com/trec-dd/trec-dd-jig
environment responds with a reward and the agent also need to update its internal state. The goal of reinforcement learning is to find the optimal policy that maps the state to the action which can maximize the accumulated reward in the long run.

![Diagram of Reinforcement Learning](image)

Figure 1. Framework of Reinforcement Learning

Many methods have been used for finding the optimal policy under a given state, such as dynamic programming and monte carlo methods [6]. In recent years, deep learning methods are also used to tackle this problem [7]. Deep Reinforcement Learning has made exciting achievements in games such as Go [8] and Atari [9]. Optimal policies are learned through the past experiences of interaction between the agent and environment using deep neural networks.

Inspired by the recent progress of deep reinforcement learning, we model the DD task as a reinforcement learning problem. Our methods are discussed in detail in the next section.

3. Methods
 3.1. Markov Decision Process

Markov decision process (MDP) [10] are widely used to model the problem of reinforcement learning. An MDP can be described as a tuple \(< S, A, T, R, \pi > \).

- \(S \): the set of states \((s) \). State is agent’s belief about the status environment. In our methods, the state is the current search status, which may include the topic name, the relevance judgement received so far, the number of iterations and etc.

- \(A \): the set of actions \((a) \). Action is the agent’s behavior under a given state. In our methods, the action is the search strategy that is used to retrieve documents. Different search strategy is used in different scenarios.

- \(T \): the transition function of the state. After the agent takes an action in the previous state, it will be taken into a new state. So \(T : S \times A \rightarrow S, s_{t+1} = T(s_t, a_t) \)

- \(R \): the immediate reward. After the agent takes action in the given state, it receives an immediate reward from the environment regarding how “well” the action is. \(R(s,a) \) is a scale value. The goal of reinforcement learning is to maximize the cumulated reward in the long term. In our methods, the immediate reward is defined as the incremental of relevant information.

- \(\pi \): the policy, it is the mapping from the state to the action, a stochastic rule that defines which action should be taken in the given state. \(a = \pi(s) \).
The ultimate goal of reinforcement learning is to find the optimal policy, following which the agent makes a series of decisions that maximizes the long term reward. Various methods have been proposed to find a good policy. One of them is Deep Q-learning Network [9], which has achieved a great success.

3.2. Deep Q-learning Network

Q-learning is proposed by Watkins and Dayan [14]. Q-learning directly approximates the optimal action value function, which is the accumulated reward of an action in a state. It is defined as

\[Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left[r_{t+1} + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t) \right] \]

Minh et al proposed Deep Q-learning Network (DQN) [9], where the \(Q(s,a) \) is estimated using a deep neural network. They also use double learning to stabilize the training. All the state transitions \((s, a, s', r) \) are stored, where \(a = \pi(s) \), \(s' = T(s,a) \), \(r = R(s,a) \). The loss function for the training of neural network is

\[L(\theta) = \sum_{(s,a,s',r) \in \text{batch}} (r + \gamma \max_a Q(s',a' | \theta^\prime) - Q(s,a | \theta))^2 \]

During every iteration, a batch of stored transitions are sampled. \(\theta \) is the parameter of the Q-learning network and \(\theta^\prime \) is the parameter of target network. Every fixed steps, the parameter of the target network is synchronized with the Q-learning network.

Following their general method, we redefine \(S, A, T \) and \(R \), model the DD task as a reinforcement learning problem, look for the optimal policy that satisfies user’s information need as quickly as possible.

We propose two frameworks which share many similarities with major difference in the definition of states and slight difference in actions.

3.3. Framework 1

In this framework, we encode the semantic meaning of search result into states and provide 4 actions proposed in [11]. The framework is shown in Figure 2.

The state is defined as a tuple, \(S = \langle \text{Query}, \text{Relevant Passages}, \text{Iteration number} \rangle \). Since the length of query and relevance passages may contain any number of words, we use Long Short Term Memory (LSTM) [13] to encode the query and passages respectively. The LSTM takes in as input the sequence of word vectors, which are obtained through Word2Vec [12], of every word in the query/ relevant passages. Then the final output of LSTMs and the iteration number are concatenated to form the state.

The actions reformulate queries in different ways or stop the search on the current topic. The possible actions includes adding term, removing term, reweight term and stop search.

One of the problems about this framework is that, different search topic have completely different queries, so it might be hard for this neural network to reuse the experience in previous topics to help the search on the current topics, especially when the amount of data is limited. In order to handle this problem, we propose Framework 2.
3.4. Framework 2

In this framework, we try to reuse the shared information among different topics in a search process. For example, the number of subtopics found so far and the number of relevant documents regarding each subtopic. Apart from the four actions used in Framework 1, we also add another action.

The state is defined as a tuple $S = (\text{subtopic_found_flag, subtopic_hit_count, iteration_number, miss_count})$. The $\text{subtopic_found_flag}$ is a boolean vector with a fixed length, where each entry indicates if the subtopic has been
found so far. If an entry is 0, it means the subtopic has not been found so far or the subtopic may not even exist in current topic. The subtopic hit count is in the same length of subtopic found flag, and each entry is the number of documents have been found on the corresponding subtopic. iteration number is the same as in Framework 1.

miss count is the number of iterations where no relevant documents are retrieved.

Five actions are used in this framework. Four of them are also used in Framework 1. The one newly added is to search using the top 10 words, which have the highest tf-idf value in the relevant passages.

3.5. Implementation Details

K-fold Cross-validation: Since DD does not specify the training set and test set. We split the topics into 3 folds in equal sizes. Every time, the neural network is trained on 2 of them and tested on the remaining one.

Reward: Key results, i.e. passages with highest relevance scores, should be highlighted. So for every passage, its relevance score (rating) is redefined as: \(r' = r \) iff. \(r = 4 \) else \(r' = 0.1 \times r \) where \(r \) is the original rating for the passage. And then we recompute the gain of Cube Test [2] base on \(r' \). The incremental of the gain of Cube Test is the reward of the current iteration.

Other: We use galago\(^2\) as our backend search engine and use the default structured query operator. We use gensim\(^3\) to obtain the word vector and Keras\(^4\) to build the deep neural network.

4. Results

We submitted 3 runs, dqn_semantic_state, dqn_5_actions, and galago_baseline. dqn_semantic_state uses Framework 1 and dqn_5_actions uses Framework 2. galago_baseline is the top 50 results of galago with no feedback information being used, which serves as the baseline for comparison.

The performance of three runs regarding Cube Test, session-DCG and Expected Utility and their normalized scores are shown in Figure 4 to Figure 9, more detailed results can be found in Table 10.

5. Discussion

Every metric reveals some different characteristics of these runs, which brings in very interesting discussions about our methods.

In terms of Cube Test, both frameworks surpass the baseline. Especially dqn_semantic_state, which uses Framework 1. It doubles the baseline in the end. It means that both frameworks improve the efficiency of the dynamic search system. The improvement on efficiency might come from more gaining of relevant information in given time. It may also come from early stopping on the topics where search system may not perform so well.

\(^2\) https://www.lemurproject.org/galago.php
\(^3\) https://radimrehurek.com/gensim/
\(^4\) https://keras.io/
Figure 4. CT scores

Figure 5. nCT scores
Figure 6. sDCG scores

Figure 7. nsDCG scores
Figure 8. EU scores

Figure 9. nEU scores
Session DCG gives more insight about the gaining of relevant information. It can be found that the session DCG score of $dqn_{\text{semantic_state}}$ is below the baseline while $dqn_{\text{5_actions}}$ is still better than the baseline. It can be inferred that the high performance of $dqn_{\text{semantic_state}}$ in terms of Cube Test does not come from retrieving more relevant documents.

Expected Utility evaluates how well the search system balance the gaining of information and the effort of user. It is seen that both frameworks makes improvement over the baseline and $dqn_{\text{5_actions}}$ is the best this time. It confirms again $dqn_{\text{semantic_state}}$ achieve high performance in CT by early stopping while $dqn_{\text{5_actions}}$ does find more relevant documents.

One of the major discoveries in our runs this year is the power of early stopping. A good stopping strategy can greatly improve the efficiency of search system and satisfies the user better. We also show the great potential of deep reinforcement learning in dynamic search. It found a stopping criterion that improve the efficiency this time. And it will be a much more interesting question that how to use it to find a good retrieval algorithm.

Acknowledgement

This research was supported by DARPA grant FA8750-14-2-0226 and NSF grant IIS-145374. Any opinions, findings, conclusions, or recommendations expressed in this paper are of the authors, and do not necessarily reflect those of the sponsor.
Reference

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Run</th>
<th>CT</th>
<th>nCT</th>
<th>sDCG</th>
<th>nsDCG</th>
<th>EU</th>
<th>nEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>dqn_5_actions</td>
<td>0.4701114</td>
<td>0.4756687</td>
<td>15.4846276</td>
<td>0.4456217</td>
<td>11.6124865</td>
<td>0.3499484</td>
</tr>
<tr>
<td></td>
<td>dqn_semantic_state</td>
<td>0.4683404</td>
<td>0.4742194</td>
<td>14.8987069</td>
<td>0.4620971</td>
<td>11.1862801</td>
<td>0.3473296</td>
</tr>
<tr>
<td></td>
<td>galago_baseline</td>
<td>0.450791</td>
<td>0.4563555</td>
<td>13.7844676</td>
<td>0.4337153</td>
<td>10.248345</td>
<td>0.3431296</td>
</tr>
<tr>
<td>2</td>
<td>dqn_5_actions</td>
<td>0.2760114</td>
<td>0.5592316</td>
<td>21.6554912</td>
<td>0.4760824</td>
<td>17.4928539</td>
<td>0.5543615</td>
</tr>
<tr>
<td></td>
<td>dqn_semantic_state</td>
<td>0.2938375</td>
<td>0.5938134</td>
<td>20.9093702</td>
<td>0.4664933</td>
<td>16.890166</td>
<td>0.5473957</td>
</tr>
<tr>
<td></td>
<td>galago_baseline</td>
<td>0.2722861</td>
<td>0.5507842</td>
<td>19.8558578</td>
<td>0.4589931</td>
<td>16.3226741</td>
<td>0.5476611</td>
</tr>
<tr>
<td>3</td>
<td>dqn_5_actions</td>
<td>0.1930831</td>
<td>0.5867918</td>
<td>24.8716411</td>
<td>0.4804548</td>
<td>20.0101208</td>
<td>0.6468404</td>
</tr>
<tr>
<td></td>
<td>dqn_semantic_state</td>
<td>0.2217546</td>
<td>0.6720723</td>
<td>24.1273948</td>
<td>0.4666493</td>
<td>20.1680049</td>
<td>0.6419633</td>
</tr>
<tr>
<td></td>
<td>galago_baseline</td>
<td>0.193695</td>
<td>0.5879702</td>
<td>22.6569676</td>
<td>0.4594243</td>
<td>18.6602872</td>
<td>0.6395838</td>
</tr>
<tr>
<td>4</td>
<td>dqn_5_actions</td>
<td>0.1501568</td>
<td>0.6087354</td>
<td>26.8278014</td>
<td>0.4818966</td>
<td>21.1361679</td>
<td>0.7025435</td>
</tr>
<tr>
<td></td>
<td>dqn_semantic_state</td>
<td>0.1846151</td>
<td>0.7457376</td>
<td>25.3275609</td>
<td>0.4564798</td>
<td>20.7058817</td>
<td>0.6966453</td>
</tr>
<tr>
<td></td>
<td>galago_baseline</td>
<td>0.1484205</td>
<td>0.6008163</td>
<td>24.1543098</td>
<td>0.452551</td>
<td>18.9989242</td>
<td>0.6942941</td>
</tr>
<tr>
<td>5</td>
<td>dqn_5_actions</td>
<td>0.1242476</td>
<td>0.6294138</td>
<td>28.1966415</td>
<td>0.4836972</td>
<td>21.0581117</td>
<td>0.7395657</td>
</tr>
<tr>
<td></td>
<td>dqn_semantic_state</td>
<td>0.169166</td>
<td>0.8536985</td>
<td>26.1356308</td>
<td>0.4332171</td>
<td>20.3719695</td>
<td>0.7338354</td>
</tr>
<tr>
<td></td>
<td>galago_baseline</td>
<td>0.1211844</td>
<td>0.6132961</td>
<td>25.3420453</td>
<td>0.450617</td>
<td>19.1343022</td>
<td>0.7325733</td>
</tr>
<tr>
<td>6</td>
<td>dqn_5_actions</td>
<td>0.1114354</td>
<td>0.6770347</td>
<td>29.2426583</td>
<td>0.4840687</td>
<td>21.3944172</td>
<td>0.7682166</td>
</tr>
<tr>
<td></td>
<td>dqn_semantic_state</td>
<td>0.1589661</td>
<td>0.9625457</td>
<td>26.1356308</td>
<td>0.4332171</td>
<td>20.1250828</td>
<td>0.7620878</td>
</tr>
<tr>
<td></td>
<td>galago_baseline</td>
<td>0.102758</td>
<td>0.6240457</td>
<td>26.5015414</td>
<td>0.451918</td>
<td>19.1694004</td>
<td>0.7608299</td>
</tr>
<tr>
<td>7</td>
<td>dqn_5_actions</td>
<td>0.1014448</td>
<td>0.7187933</td>
<td>29.9681515</td>
<td>0.4836611</td>
<td>21.2873622</td>
<td>0.7899146</td>
</tr>
<tr>
<td></td>
<td>dqn_semantic_state</td>
<td>0.1532954</td>
<td>1.0830598</td>
<td>26.4518366</td>
<td>0.425639</td>
<td>19.9831539</td>
<td>0.7842344</td>
</tr>
<tr>
<td></td>
<td>galago_baseline</td>
<td>0.0892321</td>
<td>0.6321475</td>
<td>27.6992079</td>
<td>0.4548045</td>
<td>19.6283697</td>
<td>0.7840226</td>
</tr>
<tr>
<td>8</td>
<td>dqn_5_actions</td>
<td>0.094049</td>
<td>0.7613281</td>
<td>30.6252363</td>
<td>0.4857005</td>
<td>21.1754035</td>
<td>0.8075685</td>
</tr>
<tr>
<td></td>
<td>dqn_semantic_state</td>
<td>0.1496234</td>
<td>1.208232</td>
<td>26.6684066</td>
<td>0.4182104</td>
<td>19.6949104</td>
<td>0.8018887</td>
</tr>
<tr>
<td></td>
<td>galago_baseline</td>
<td>0.0792522</td>
<td>0.6417305</td>
<td>28.4367084</td>
<td>0.4564065</td>
<td>18.9915583</td>
<td>0.8011377</td>
</tr>
<tr>
<td>9</td>
<td>dqn_5_actions</td>
<td>0.0877909</td>
<td>0.792842</td>
<td>31.197493</td>
<td>0.4852854</td>
<td>20.9258899</td>
<td>0.8220898</td>
</tr>
<tr>
<td></td>
<td>dqn_semantic_state</td>
<td>0.1475708</td>
<td>1.3405783</td>
<td>26.9146451</td>
<td>0.4124845</td>
<td>19.7538581</td>
<td>0.8171259</td>
</tr>
<tr>
<td></td>
<td>galago_baseline</td>
<td>0.0710383</td>
<td>0.6471881</td>
<td>29.2236247</td>
<td>0.4592193</td>
<td>18.7172524</td>
<td>0.8159354</td>
</tr>
<tr>
<td>10</td>
<td>dqn_5_actions</td>
<td>0.082483</td>
<td>0.834239</td>
<td>31.7663899</td>
<td>0.4850046</td>
<td>20.9282911</td>
<td>0.8347376</td>
</tr>
<tr>
<td></td>
<td>dqn_semantic_state</td>
<td>0.1464314</td>
<td>1.4784141</td>
<td>27.1194546</td>
<td>0.4107508</td>
<td>19.8255847</td>
<td>0.8302033</td>
</tr>
<tr>
<td></td>
<td>galago_baseline</td>
<td>0.0643294</td>
<td>0.6512856</td>
<td>29.6418512</td>
<td>0.4581143</td>
<td>17.9727267</td>
<td>0.8280541</td>
</tr>
</tbody>
</table>

Table 1. Evaluation results in first 10 iterations